CGP-37157 inhibits the sarcoplasmic reticulum Ca²+ ATPase and activates ryanodine receptor channels in striated muscle.
نویسندگان
چکیده
7-Chloro-5-(2-chlorophenyl)-1,5-dihydro-4,1-benzothiazepin-2(3H)-one [CGP-37157 (CGP)], a benzothiazepine derivative of clonazepam, is commonly used as a blocker of the mitochondrial Na+/Ca²+ exchanger. However, evidence suggests that CGP could also affect other targets, such as L-type Ca²+ channels and plasmalemma Na+/Ca²+ exchanger. Here, we tested the possibility of a direct modulation of ryanodine receptor channels (RyRs) and/or sarco/endoplasmic reticulum Ca²+-stimulated ATPase (SERCA) by CGP. In the presence of ruthenium red (inhibitor of RyRs), CGP decreased SERCA-mediated Ca²+ uptake of cardiac and skeletal sarcoplasmic reticulum (SR) microsomes (IC₅₀ values of 6.6 and 9.9 μM, respectively). The CGP effects on SERCA activity correlated with a decreased V(max) of ATPase activity of SERCA-enriched skeletal SR fractions. CGP (≥ 5 μM) also increased RyR-mediated Ca²+ leak from skeletal SR microsomes. Planar bilayer studies confirmed that both cardiac and skeletal RyRs are directly activated by CGP (EC(50) values of 9.4 and 12.0 μM, respectively). In summary, we found that CGP inhibits SERCA and activates RyR channels. Hence, the action of CGP on cellular Ca²+ homeostasis reported in the literature of cardiac, skeletal muscle, and other nonmuscle systems requires further analysis to take into account the contribution of all CGP-sensitive Ca²+ transporters.
منابع مشابه
CGP - 37157 inhibits the sarcoplasmic reticulum Ca 2 + ATPase and activates ryanodine receptor channels in striated muscle
متن کامل
Structure and function of Ca-ATPase and the ryanodine receptor
Contraction of striated muscle results from a rise in cytoplasmic calcium concentration in a process termed excitation/contraction coupling. Most of this calcium moves back and forth across the sarcoplasmic-reticulum membrane in cycles of contraction and relaxation. The channel responsible for release from the sarcoplasmic reticulum is the ryanodine receptor, whereas Ca-ATPase effects reuptake ...
متن کاملRole of Ryanodine Receptor Subtypes in Initiation and Formation of Calcium Sparks in Arterial Smooth Muscle: Comparison with Striated Muscle
Calcium sparks represent local, rapid, and transient calcium release events from a cluster of ryanodine receptors (RyRs) in the sarcoplasmic reticulum. In arterial smooth muscle cells (SMCs), calcium sparks activate calcium-dependent potassium channels causing decrease in the global intracellular [Ca2+] and oppose vasoconstriction. This is in contrast to cardiac and skeletal muscle, where spati...
متن کاملRyanodine receptor luminal Ca2+ regulation: swapping calsequestrin and channel isoforms.
Sarcoplasmic reticulum (SR) Ca(2+) release in striated muscle is mediated by a multiprotein complex that includes the ryanodine receptor (RyR) Ca(2+) channel and the intra-SR Ca(2+) buffering protein calsequestrin (CSQ). Besides its buffering role, CSQ is thought to regulate RyR channel function. Here, CSQ-dependent luminal Ca(2+) regulation of skeletal (RyR1) and cardiac (RyR2) channels is exp...
متن کاملOntogeny of Local Sarcoplasmic Reticulum Ca Signals in Cerebral Arteries Ca Sparks as Elementary Physiological Events
Ca release through ryanodine receptors (RyRs) in the sarcoplasmic reticulum is a key element of excitation-contraction coupling in muscle. In arterial smooth muscle, Ca release through RyRs activates Ca-sensitive K (KCa) channels to oppose vasoconstriction. Local Ca 21 transients (“Ca sparks”), apparently caused by opening of clustered RyRs, have been observed in smooth and striated muscle. We ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular pharmacology
دوره 79 1 شماره
صفحات -
تاریخ انتشار 2011